

Navigation Message Authentication

Cillian O'Driscoll

NNF Seminar on Safety and Security Issues in Positioning, Navigation and Timing

Oslo, 14 June 2023

Motivation

- Much interest in recent years in robust, secure, authentic and resilient navigation
- Learning from similar problems in communications systems, we are applying cryptographic schemes to add **authentication** capabilities
- However there is a significant difference between comms and navigation

In navigation, the message (user PVT) is **unknown** to all parties

The Navigation Problem

- Navigation is fundamentally an **estimation** problem
 - The end user wishes to estimate the time-varying state for some entity
- Estimation requires **measurements** that are inherently noisy
- Measurements may be:
 - Intrinsic: not dependent on any external source (e.g. time, acceleration, etc)
 - Extrinsic: dependent on external information (e.g. declination of a fixed star)
- To fix one's position wrt an external frame of reference **requires** some extrinsic measurement
 - This is to some extent vulnerable to spoofing

GNSS Based PVT

- A GNSS is navigation system in which the extrinsic measurements are provided by a constellation of satellites orbiting the earth
- There are three fundamental premises to the correct operation of a GNSS:
- 1. Each satellite generates its signals at precise, pre-specified epochs (in the satellite's own clock domain)
- 2. Each satellite transmits accurate models of its own position, velocity and time
- 3. The signals have travelled in a more-or-less straight line at more-orless the speed of light in vacuo from the satellite to the receiver

GNSS Based PVT Assurance

- How can we assure that these three premises are met?
 - We can **authenticate** the **origin** of the signals by introducing unpredictable elements
 - An attacker must observe the elements, but can replay them
 - Does **not guarantee** that signals are received **directly** from the satellites, but does guarantee that the signals originated with the satellites
 - We can **authenticate** the content of the navigation messages
 - This means the decoded ephemeris are as broadcast (does not prevent integrity failures!)
- But we still have a fundamental issue:

A GNSS receiver can be successfully spoofed even when the spoofed and authentic signals are identical, but shifted in time, frequency, amplitude or phase.

Recommended Reading

Anti-Spoofing & Authenticated Signal Architectures for Civil Navigation Systems

Logan Scott, LS Consulting

methods. To this end, we look at a four level signal authentication architecture:

- 0. **No Enhancement**. Receivers can ignore signal authentication features and still successfully operate. Higher levels maintain backwards compatibility with extant receivers.
- 1. Data Message Authentication. Can be implemented in software.
- 2. **Public Spreading Code Authentication** Requires precorrelation sample storage similar to block acquisition schemes.
- 3. **Private Spreading Code Authentication** Requires tamper resistant hardware and secure keying.

Scott, L. "Anti-Spoofing & Authenticated Signal Architectures for Civil Navigation Systems", Proceedings of ION GPS/GNSS 2003.

Some initial observations

- Unpredictable elements are necessary in GNSS signals to provide a proof of origin
 - But not **sufficient** to show that there has not been an interception and manipulation of the measurement
- Message authentication is necessary to ensure authenticity of orbit and clock models

Unpredictability and Verifiability

- With no unpredictability
 - An attacker can generate a **perfectly** legitimate signal
- Unpredictability **>** elements the attacker **cannot** know in advance
- Verifiability → Receiver can verify that the unpredictable elements are indeed from the system

Navigation Message Authentication

- NMA introduces unpredictable elements to the navigation data stream
- These elements are a function of the raw navigation data (ephemeris etc) and some **secret** known only to the system
- Users verify that the data and unpredictable elements correspond to one another, either:
 - By using asymmetric cryptography
 - Through a delayed release of the secret key

Recommended Reading

Nighswander, Tyler, et al. "GPS software attacks." *Proceedings of the 2012 ACM conference on Computer and communications security*. 2012.

Benefits of NMA

- The primary role of NMA is, as the name suggests, to **authenticate** the navigation data
 - Prevents an attacker from maliciously modifying the message to mislead the victim
- Secondary benefit:
 - NMA introduces **unpredictable elements** to the signals
 - Attackers must observe the signal to effect a successful attack
 - Places a lower bound on time
 - If we successfully authenticate data with NMA, then current time must be later than the time the data was transmitted
 - Ties the data to the unpredictable elements and vice versa

What can we conclude from verified NMA?

- Let's assume the NMA check passes in our receiver → What does this imply?
 - 1. Either:
 - a) The navigation data received was indeed that broadcast by the system
 - b) An attacker generated matching data/authentication data pair [very low probability]
 - 2. The time of reception is **later** than the time the unpredictable elements were broadcast by the satellite
 - We have a **lower bound on time**
 - 3. Either:
 - a) The data was received directly from the GNSS satellite; or
 - b) The data has been received by a 3rd party and re-broadcast
- It is, ultimately, up to the receiver to decide what to do with this information

What can we conclude from failed NMA?

- Let's assume the NMA check fails in our receiver → What does this imply?
- Essentially one of the following **must** be true:
 - 1. The data we received was corrupted in such a way that the CRC still passed; or
 - 2. The data was generated by a 3rd party and not by the system; or
 - 3. The system suffered a failure and transmitted either the incorrect data or an incorrect signature
- Again, ultimately, up to the receiver to decide what to do with this information

Summary

- NMA is a **useful tool** in improving GNSS receiver security
- Forces an attacker to **observe** the true signal in order to make a successful attack
- Important to understand the implications of both passing and failed verifications
 - Receiver logic must account for all possibilities
 - Make decisions on corrective action based on *a priori* models of the likelihood of each scenario
- Galileo OSNMA is here today let's use it
 - Only from real-world use will we fully understand and realise its full potential

Thank you

cillian@codc.ie

References

- Scott, L. "Anti-Spoofing & Authenticated Signal Architectures for Civil Navigation Systems", Proceedings of ION GPS/GNSS 2003.
- Nighswander, Tyler, et al. "GPS software attacks." *Proceedings* of the 2012 ACM conference on Computer and communications security. 2012.

Extra Material

Symmetric Key Authentication

 Alice sends Bob a message, along with a MAC to enable verification of authenticity – Mal wishes to falsify the message

 Alice and Bob share a secret key which can be used to regenerate the MAC and verify that MAC and message agree

Asymmetric Key Authentication

- Here Alice has a private key which she uses to generate a digital signature
- She publishes here **public key** which anyone can use to **verify** the DS

NMA in the wild

Galileo: OSNMA

- Galileo has introduced Open Service Navigation Message Authentication (OSNMA)
- 40 bits in very I/NAV page pair in E1B are used to disseminate the authentication information
 - 32 bits contain Message Authentication Codes (MACs) and keys
 - 8 bits contain status and other data
- OSNMA is here **today** use it!

22

GPS: Chimera

- CHIps and MEssage Robust Authenticatior (Chimera) combines message and signal authentication
- Message authentication:
 - Asymmetric scheme
 - Authenticates all data every 18 seconds
- Planned for launch on the NTS-3 satellite later this year
- Unknown whether it will be integrated into GPS

Air Force Research Laboratory, "Chips Message Robust Authentication (Chimera) Enhancement for the L1C Signal: Space Segment/User Segment Interface" IS-AGT-100

